

Uncharted Territories in Power Electronics

Johann W. Kolar et al.

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Oct. 1, 2024

Uncharted Territories in Power Electronics

Johann W. Kolar & Jonas Huber

Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Oct. 1, 2024

Outline

- ► Introduction
- Mastering the Deep
 Taking Actions for a Healthy Planet
 Unlocking the High Frontier
- Conclusions

Acknowledgment

Florian Krismer David Menzi

Mastering the Deep

Deep-Sea E-HyDrones Subsea Resident AUVs

Blue Economy

- Economic Sectors Related to Exploitation / Preservation / Regeneration of Marine Environment
- **Established Sectors** Maritime Transp. | Ship Buildg | Fishing | Off-Shore Oil & Gas | Coastal Tourism | etc.

Source: EU Science Hub

- Emerging Activities Floating Off-Shore Wind & Solar Energy | Wave & Tidal Energy | Sub-Sea Robotics etc.
 Important Role in the EU's Transition Towards a Carbon-Neutral / Circular / Biodiverse Economy

Floating Off-Shore Wind Power Plants

- **80% of Off-Shore Wind Energy Available in Deep Waters**
- Higher & More Consistent Wind Speeds / Lower Environmental Impact

Floating Support Structures for Seabed Depths > 60m — Seabed Connection Through Mooring Cables 3 Basic Types — Tower-Like Spar Buoy | Semi-Submersible | Tension Leg (Mooring Cables Under Tension)

Source: Josh Bauer / NREL

ETH zürich

IEEE-PEMC

2024

Remark Airborne Wind Turbines

"Pulling Power from the Sky" — Replace Conv. Windmills by Airborne Devices Suspended High Up in the Air Tether Cable Replaces Massive Steel Tower / Aerofoil Kite or Glider Replaces Long Rotating Turbine Blades

High Crosswind Speed → Very Small Turbine Area / Higher & More Consistent Wind Speeds @ High Altitudes
 Floating Platform Anchored in Deep Water | On-Board Generators & Tether Conducting Electricity to Ground

Floating Off-Shore Solar Plants

- 10x Growth of Solar Power to 5...10 TW Mandatory for Closing the Emission Gap
- **Dense Population / Land Shortage** \rightarrow Utility-Scale Solar Projects on Inland Waters and in Oceans Potential Combination of Off-Shore Wind & Off-Shore Solar Infrastructures

Source: www.rechargenews.com

- Higher Sun Irradiance @ Sea & Lower Temperature \rightarrow Higher Efficiency Destructive Wind & Wave Forces \rightarrow Membrane-Type Flexible Circular Platforms w/ Buoyancy Rings
- Potentially Lower Cost of Off-Shore Solar Compared to Off-Shore Wind 2x Higher GWh/km²

Off-Shore Green-H₂ **Production**

- Energy Transport via Molecules / Hydrogen Avoids High of HVDC Cables / Systems Declining Oil & Gas Production \rightarrow Repurposing of Offshore Assets / Platforms, Pipelines etc.

- P2G → Desalinated H₂O Electrolyzers on Off-Shore Platforms Converting Wind Energy to "Green Hydrogen" 60-80% Conversion Efficiency / Multi-GW Scale / Interconnection of Neighboring Countries

Ocean Thermal Energy Conversion

- **Temperature Difference in Oceans Utilized for 24/7 (!) Electricity Generation** 25°C Surface Water Vaporizes Low Boiling Point Ammonia Expanding Vapor Drives Turbine Vapor @ Turbine Output Condensed by 5°C Seawater Pumped from -1000m

- 10MW OTEC Pilot Planned in Southern China by Lockheed Martin & Reignwood Group Potential of \approx 7 TW Globally w/o Significant Effect on the Ocean Temperature Fields (30 TW Total Resource)

IEEE-PEMC

2024

Subsea Pumped Hydro Storage

- **GWh-Scale 10MWh-Modular / Scalable Storage** @ Seabed Exploiting the High Deep-Sea Pressure
- Off-Shore Installation Near Wind Farms / Floating Solar Farms / Tidal & Wave Energy Systems etc.

Charging → Pumping Water from Low-Pressure Rigid Reservoir into High Pressure Environment
 Discharging → High Pressure Environment Pushes Water Into Reservoir / Drives Turbine

Off-Shore CO₂ Storage

- CO_2 Capture & Storage (CCS) \rightarrow Main Element of the Energy Transition to a Low Carbon Future
- Future Industrial CCS Value Chain \rightarrow CO₂ Transported by Ships & Stored in Off-Shore Formations

- World's 1st Off-Shore CCS Plant in Operation since 1996 in Sleipner Natural Gas Field (Equinor = Statoil)
- Norwegian O_2 Tax Introduced 1991 $\rightarrow O_2$ Contained in Natural Gas Re-Injected Into Porous Sandstone

Subsea Industry / Autonomous Factories

Deep-Sea Oil & Gas Extraction / Processing — No Platforms / Lower \$\$\$ | Deep-Sea Mining Lower Environmental Impact of Natural Gas Compared to Coal \rightarrow "Golden Age of Gas"

Hydraulic Wells \rightarrow *High Eff. All-Electric Wells* \rightarrow *No High Pressure Equipm. / No Pipe Leaking / Lower* \$\$\$

Long Distance DC Power Transmission (600km, 100MW, 3000m) \rightarrow Pumps etc. Located @ Seabed

Power Electronic Systems Laboratory

Seabed Interventions – 1/2

- Burial of Subsea Pipelines and Cables Jet Trenching ROVs | Ploughs | Mechanical Trenchers x 1000m Operation Depth

World's Most Powerful Trencher (T3200 / 2.4 MW / DeepOcean)

Seabed Interventions – 2/2

- Burial of Subsea Pipelines and Cables Jet Trenching ROVs | Ploughs | Mechanical Trenchers x 1000m Operation Depth

Source: DEEPOCEAN

World's Most Powerful Trencher (T3200 / 2.4MW / DeepOcean)

IEEE-PEMC

2024

Deep-Sea Mining Vehicles – 1/2

- Suction of Polymetallic Nodules (Mn, Co, Cu, etc.) @ Seabed (4000...6000m) Subsea Crushers & Pumps for Transportation of the Minerals to Supporting Vessel

Potential Serious Threat to Global Oceans (!)

Deep-Sea Mining Vehicles – 2/2

- Suction of Polymetallic Nodules (Mn, Co, Cu, etc.) @ Seabed (4000...6000m) Subsea Crushers & Pumps for Transportation of the Minerals to Supporting Vessel

Patania II 25t Robot "Nodule Collector" (Tested @ 4500 m)

Scientific Exploration of Ocean Depths

Full Ocean Depth ROV Kaiko / JAMSTEC (Launcher & Vehicle) \rightarrow 10'911m / Lost During a Typhoon New 11'000m-Class ROV (ABISM0 — Automatic Bottom Inspection and Sampling Mobile)

Remark Electronics Pressure Housings

- Air or Gas Filled Components
One-Atmosphere Housings→ Would Implode in Large Depths (e.g. 6000 m → 600bar)
→ Maintain Constant Inside Pressure / Cylindrical or Spherical Shape
→ Int. ≈ Ext. Pressure / Oil Filled No Voids / Not Shape (Cooling) Restricted !

- **Research** on Pressure-Tolerant Power Electronic Components (300bar) @ SINTEF IGBTs \rightarrow Sw. Behavior Unaffected / Chip Interface Needs to be Protected from Surrounding Liquid
- Pressure Affects BH-Curve of Magnetic Cores & Impairs Self-Healing of PP Film Cap. \rightarrow Voltage Derating

Autonomous Underwater Vehicles — AUV

- Self-Powered & Self-Guided \rightarrow No Tether or Line to Crewed or Uncrewed Surface Ship / Lower Mission \$\$\$ etc.
- Mission Range & Duration Limited by Onboard Battery Capacity

- Seabed Docking Station for Battery Recharge / Mission Download & Data Offload → Enables Subsea Residency
- **Local Power Generation & Surface Communication | Unmanned Surface Vehicle for Launch & Recovery**

Wireless AUV Charging — Resonant IPT

- **Co-Axial Arrangement of High-Q Coils Operating in Resonance / Relatively Large Misalignment Tolerance**
- **Funnel-Shaped Recovery Cage Entry Cone & Docking Tube**

- Ferrite Elements for Magn. Flux Shaping \rightarrow Red. Field/EMI Inside the AUV & Red. Eddy Curr. in AUV Metal Hull
- Coil Geometry Adapted to Physical AUV Structure \rightarrow Limited Interoperability

Power Electronic Systems Laboratory

Power Electronic Systems Laboratory

Future Underwater Habitats

- Underwater Version of the International Space Station Discovery of New Species of Marine Life / Aquacultures / Understanding Climate Change Effects

PROTEUS — First in a Network of Future Underwater Habitats

Taking Actions for a Healthy Planet

Decarbonization Circular Economy

Decarbonization / Defossilization

"Net-Zero" Emissions by 2050 & Gap to be Closed **50** GtCO_{2ea} Global Greenhouse Gas Emissions / Year \rightarrow 280 GtCO₂ Budget Left for 1.5°C Limit

Challenge of Stepping Back from Oil & Gas
 Human History — Transition from Lower to Higher Energy Density Fuel — Wood → Coal → Oil & Gas

IEEE-PEMC

2024

Remark Global Sea Levels by 2100

■ Rising Sea Levels Due to Global Warming

■ North Sea Enclosure Dyke — Mammoth Dams Envisioned to Protect 25 Million Europeans — € 250bn ... 500bn

іеее-ремс 2024

The Solution

Outlook of Global Cumulative Installations Until 2050 / Add. 1000 GW Off-Shore Wind Power
 In 2050 Deployment of 370 GW/Year (PV) & 200 GW/Year (On-Shore Wind) incl. Replacements

• CAGR of \approx 9% up to 2050 \rightarrow 8500 GW

• CAGR of \approx 7% up to 2050 \rightarrow 5000 GW

Power Electronic Systems Laboratory

- Global Population by 2050 10bn 100 2.5 kW/Capita
 25'000 GW Installed Ren. Generation in 2050
- 4x Power Electr. Conversion btw Generation & Load
- **100'000 GW** of Installed Converter Power
- **20 Years** of Useful Life

5'000 GW_{eq} = 5'000'000'000 kW_{eq} of E-Waste / Year (!)
 10'000'000'000 \$ of Potential Value

Critical Minerals

Production of Selected Minerals Critical for the Clean Energy Transition

Shares of top three producing countries, 2019

Extraction & Processing More Geographically Concentrated than for Oil & Nat. Gas (!)

"Closing the Loop"

• "4R" Included Into the Design Process — <u>Repair</u> | <u>Reuse</u> | <u>Refurbish</u> | <u>Recycle</u>

- Life-Cycle Cost Perspective Potentially Advantageous for Suppliers & Customers
- Quantification of Repairability / Reusability / etc. Still to be Clarified

Remark "Integration" vs. Circular Economy

System in Package (SiP) Approach — Isolated & Non-Isolated DC/DC Converters, PFC Rectifiers, etc.
 Minim. of Parasitic Inductances / EMI Shielding / Integrated Thermal Management

- Extreme Power Density / Dismantlability (?)
- Specific Functionality / Economy of Scale (?)

іеее-ремс **2024**

Modularity — Facilitating Upgrade | Reuse | Repair

Modular Design Considering Ease of Disassembly | Maintainability | Upgradability | Reusability | etc. Grouping of Components Determined by Reliability Level & Expected Lifetime / Level of Reusability or Recyclability

- **FAIRPHONE** Modular | Manually Replaceable Parts | 100% Recycl. of Sold Products | Fairtrade Materials Standardized Interfaces / Mechanically Separable Connections
- Leveraging Economies of Scale to Compensate Interface Costs

2024

Power Electronics 5.0

Unlocking the High Frontier Launch Systems Space Colonies

Space — An "Unexplored Ocean" to be Navigated

- Global Space Race Demonstration of Technology Leadership | Military Interests | Resources
- Mining the Moon Helium-3 | Rare Earth Elements | Platinum | etc. & Ice (Life Support & Propellant)
 Satellite Network Communication | Navigation | Military Operations

- NASA Artemis Program Land Humans @ Lunar South Pole by 2026
- Planning to Send a Lunar Lander to the Moon's South Pole / Construct "Lunarville" ESA
- **CNSA** China Crewed Moon Landing by 2030

Launching Satellites w/o Rockets

- Traditional Fuel-Based Rocket Launching Up to \$ 100'000/Pound (\$ 2000/Pound w/ SpaceX)
 SpinLaunch Uses Electrical Slingshot to Catapult a Spacecraft into Orbit

- Payload (up to 200kg) in Reusable Launch Vehicle | 1.5h Acceleration in Vacuum Centrifuge up to 8000km/h Released Through Hypersonic Header | 10´000g Take-Off | Ignition of Small Rocket Engine in 60km Altitude

IEEE-PEMC

2024

Space Elevator

- "Cosmic Railway"/ Space Elevator Envisioned by to Y. Artsutanov as Alternative to Rockets in 1960
- **By 2050** 100t Electric Climber | 96'000km Carbon Nanotube Tether | 400m Diameter Floating Earth Port

Upward Centrifugal Force on 12'500t Counter-Weight & Gravity Acting on Lower End Keep Tether Under Tension
 Balanced Forces at Geostationary Equatorial Orbit (GEO) — Orbit Station @ Height of 36'000km

Beaming Solar Power from Space

- Solar Power Harvested in Space | Converted to Microwaves | Sent to Earth-Based Receiving Stations
 Advantage of Permanent Availability of Energy Regardless of Weather or Time of Day No Storage (!)

- Several International Programs (ESA, JAXA, NASA, CNSA, etc.)
 Caltech Space Solar Power Prototype Launched into Orbit in 2023
- Demonstration of Ability to Beam Detectable Power to Earth

IEEE-PEMC

2024

Power Electronic Systems Laboratory

3D-Printing of Lunar Habitats

- Lunar Regolith Processed Into Building Material Local 3D-Printing of Habitats
- **Extreme Temp.** Swings of 120°C ... -220°C & Frequent Strikes by Micrometeorites
- No Protective Magnetic Shield / Ionizing Radiation from Sun & Deep Space

- Regenerative Closed-Loop Life Support Systems | Wireless Connections to El. Power System
- **ΝΑ̈́SA "LunaGrid"** km-Range MV Transmission btw μ-Grids w/ Solar Power Gen. & Storage & Loads

Lunar Power Distribution

- **28** Days Rot. / 2 Weeks of Darkness Lunar Base Placed @ South Pole for Continuous Sunlight
- Tether-Based MV Grid for Connecting Islanded Microgrids Comprising Generation-Storage-Loads
- Power Beaming for Robotic Exploration of Craters & WPT Rover Charging Outposts

- Example of Univ. Modular Microgrid Definition & Interface Conv. for Planetary Surfaces UMIC/UMIPS
- **Bidir.** Converter Interface btw Transmission Voltage (typ. 1.5 kV_{DC}) & Prim. Distribution Voltage (120 V_{DC})
- Power Levels btw. 100+ kW for In-Situ Resource Utiliz. / Mining 50...100 kW / Habitat 1...5 kW / Rover

IEEE-PEMC

2024

Lunar Cruiser

- Contribution of JAXA (Japanese Aerospace Exploration Agency) & Toyota to NASA Artemis Program
 Pressurized Vehicle | 13 m³ Living Space for 2 ... 4 Astronauts | 10[°]000 km Range

10 Tons | 6m x 5.2m x 3.8m | Metal Tires
 Fuel-Cell EV Technologies (Lunar Nights) | H₂O Electrolysis System (Mitsubishi) for H₂ Production

The Future of Education & Engineering

- Digital Twin (DT) Virtual Representation of Physical Syst. Updated w/ Real-Time Data IIoT / Industry 4.0
 Cognitive DT (CDT) Cognitive Capabilities / Autonomy / Continuous Evolvement / Full Lifecycle Coverage

Source: www.twi-global.com

- Students Grow Their (!) CDT Throughout College & Academia
- CDT Retains Record of Learned & Add. Acquired Knowledge / Knows Anything-Anytime-Anywhere / Is Immortal (!) Personalized Generative AI Assistance Potentially Disrupting Engineering & Education on All Levels

IEEE-PEMC 2024

Countdown to Technological Singularity (?)

- Each Generation Builds on Previously Achieved Results Accelerating Exponential Growth of Technologies Documented by Biological & Technological Evolution Milestones «The Singularity is Near», Ray Kurzweil, 2005

- Singularity (2045) AI-Based Creation of a Self-Aware Machine Intelligence Capable of Recursive Self-Improvement Uncontrollable / Irreversible Technological Growth Potential Massive Social & Geo-Political Consequences (!)

Remark Future Gigawatt-Scale Datacenters

Explosion of AI — « Hyperscale » Datacenters Evolving into « Exascale »
 Gigawatt Power Levels Despite High Power Usage Effectiveness (PUE)

Al is expected to drive more power demand from datacenters

Sources: S&P Global Market Intelligence; 451 Research; S&P Global Commodity Insights

- Plans for 2.5 ... 6 Gigawatt Campuses Co-Located w/ Nuclear Power Facilities Stancium
- **Collaboration w/ Utilities Datacenters as Responsive Loads for Balancing Solar & Wind Power**

GREAT Challenges Require GREAT Answers (!)

Shut Down Skepticism / Don't Catastrophize — We Need Visions & Utopian Dreams

The Dream of Yesterday is the Hope of Today and the Reality of Tomorrow (R. Goddard)

