

«X-Technologies/X-Concepts»

Key Enablers of Further Performance Improvements in Power Electronics

Johann W. Kolar et al. Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Sept. 17, 2024

«X-Technologies/X-Concepts»

Key Enablers of Further Performance Improvements in Power Electronics

Johann W. Kolar & Jonas Huber Swiss Federal Institute of Technology (ETH) Zurich Power Electronic Systems Laboratory www.pes.ee.ethz.ch

Sept. 17, 2024

ETH zürich

Acknowledgement

M. Antivachis M. Antivachis J. Azurza J. Biela D. Bortis H. Ertl T. Guillod M. Haider L. Imperiali M. Kasper J. Kaufmann G. Knabben F. Krismer Y. Li D. Menzi S. Miric J. Miniböck N. Nain D. Naumayr P. Niklaus J. Schäfer L. Schrittwieser F. Vollmaier St. Waffler S. Weihe D. Zhang

\backslash $\overline{}$ 40 min

Outline

► Introduction

Conclusions

X-Technologies
 X-Concepts

Introduction

Clean Energy Transition All-Electric Society

Decarbonization / Defossilization

- "Net-Zero" Emissions by 2050 & Gap to be Closed
- 50 GtCO_{2eq} Global Greenhouse Gas Emissions / Year → 280GtCO₂ Budget Left for 1.5°C Limit

- Human History Transition from Lower to Higher Energy Density Fuels Wood \rightarrow Coal \rightarrow Oil & Gas
- Challenge of Stepping Back from Oil & Gas to Low Energy Density Renewables

Global Sea Levels by 2100

Rising Sea Levels Due to Global Warming

• North Sea Enclosure Dyke — Mammoth Dams Envisioned to Protect 25 Million Europeans — €250bn ... €500bn

The Opportunity

(2009) 16 TW-yr — 16 TW-yr (2050)

■ Global Distribution of Solar & Wind Resources

Europe

The Approach

• CAGR of \approx 9% up to 2050 \rightarrow 8500 GW

Outlook of Global Cumulative Installations Until 2050 / Add. 1000 GW Off-Shore Wind Power
 In 2050 Deployment of 370 GW/Year (PV) & 200 GW/Year (On-Shore Wind) incl. Replacements

• CAGR of \approx 7% up to 2050 \rightarrow 5000 GW

Europe

Fundamental Role of Power Electronics

■ Global MEGA-Trends → Industry Automation | Renewable Energy | Sustainable Mobility | Urbanization etc.

- Clean Energy Transition \rightarrow "All-Electric" Society
- UN Sustainable Development Agenda \rightarrow There can be No "Plan B", because there is No "Planet B" (Ban Ki-moon)

Performance Indicators / Trends

ETH zürich

Europe

S-Curve of Power Electronics

- « X-Technologies » / "Moon-Shot" Technologies
 « X-Concepts » → Full Utilization of Basic Scaling Laws & « X-Technologies »
- Power Electronics $1.0 \rightarrow$ Power Electronics 4.0
- 2...5...10x Improvement NOT Only 10% !

X-Technologies

SiC | GaN —— 3D-Packaging & Integration Digital Signal Processing

Low R^{*}_{DS(on)}High-Voltage Devices

• High Voltage Unipolar (!) Devices \rightarrow Excellent Sw. Performance / High Power Density

ETH zürich

Si vs. SiC Switching Behavior

- Si-IGBT \rightarrow Const. On-State Voltage Drop / Rel. Low Switching Speed, SiC-MOSFETs \rightarrow Resistive On-State Behavior / Factor 10 Higher Sw. Speed

Extremely High di/dt & dv/dt \rightarrow Challenges in Packaging / EMI

Monolithic 600V GaN Bidirectional/Bipolar Switch

- POWER AMERICA Program Based on Infineon's CoolGaN™ HEMT Technology (Infineon Dual-Gate Device / Controllability of Both Current Directions Bipolar Voltage Blocking Capability | Normally-On or -Off

• Analysis of 4-Quardant Operation of $R_{DS(on)} = 140 \, m\Omega \mid 600 \, \text{V}$ Sample @ $\pm 400 \, \text{V}$

Circuit Parasitics

- High di/dt
- Commutation Loop Inductance L_s Allowed L_s Directly Related to Switching Time $t_s \rightarrow$

• Advanced Packaging & Parallel Interleaving for Partitioning of Large Currents (Z-Matching)

Si vs. SiC EMI Emissions

- Higher dv/dt → Facto
 Higher Switching Frequencies → Facto
 EMI Envelope Shifted to Higher Frequencies \rightarrow Factor 10
- \rightarrow Factor 10

• Higher Influence of Filter Component Parasitics & Couplings \rightarrow Advanced Design

3D-Packaging / Heterogeneous Integration

- System in Package (SiP) Approach Minim. of Parasitic Inductances / EMI Shielding / Integr. Thermal Management Very High Power Density (No Bond Wires / Solder / Thermal Paste)
- PCBs Embedded Optic Fibers
- Automated Manufacturing
- Recycling (?)

2.1 in² and 34 W/in² 72 Watts

0.57 in² and 105 W/in²

60 Watts

- Future Application Up to 100kW (!)
- New Design Tools & Measurement Systems (!)
- University / Industry Technology Partnership (!)

1.26 in² and 26 W/in²

Monolithic 3D-Integration

Source: Panasonic ISSCC 2014

- GaN 3x3 Matrix Converter Chipset with Drive-By-Microwave (DBM) Technology
- 9 Dual-Gate GaN AC-Switches
- DBM Gate Drive Transmitter Chip & Isolating Couplers
- Ultra Compact $\rightarrow 25 \times 18 \text{ mm}^2$ (600V, 10A 5kW Motor)

- Slowing Transistor Techn. Node Scaling \rightarrow Vertical & Heterogeneous Integr. of ICs for Performance Gains
- **Extreme 3D-Integrated Cube-Sized Compute Nodes**
- Dual Side & Interlayer Microchannel Cooling

• Interposer Supporting Optical Signaling / Volumetric Heat Removal / Power Conversion

Digital Signal / Data Processing

- Exponentially Improving uC / Storage Technology (!)
- Extreme Levels of Density (nm-Nodes) / Processing Speed
- Continuous Relative Cost Reduction

- AI-Based Design & Fully Digital Control of Complex Systems
- Distributed Intelligence / Digital Twins / Industrial IoT (IIoT)

Abstraction of Power Converter Design

- Mapping of **"Design Space"** into Converter **"η-ρ-σ-Performance Space"** Design Space Set of Selected Design- & Operating Parameters, Materials, Components, Topology, etc.

Multi-Objective Optimization

• *"Digital Twin"*

• Multi-Objective Optimization \rightarrow Best Utilization of All Degrees of Freedom (!)

Multi-Objective Optimization

- Based on Mathematical Model of the Technology Mapping
 Multi-Objective Optimization → Best Utilization of the "Design Space"
 Identifies Absolute Performance Limits → Pareto Front / Surface

- Clarifies Sensitivity $\Delta \vec{p} / \Delta k$ to Improvements of Technologies
- Trade-Off Analysis

n

Design Space Diversity

- Equal Performance \$\vec{p}_i\$ for Largely Different Sets \$(\vec{x}, \vec{k})_i\$ of Design Parameters
 E.g. Mutual Compensation of Volume or Loss Contributions (e.g. Cond. & Sw. Losses)

• Allows Consideration of Additional Performance Targets (e.g. Costs)

Design Automation Roadmap

- **End-to-End Horizon** Cradle-to-Grave/Cradle Modeling & Simulation
- Design for Cost / Volume / Efficiency / Manufacturing / Testing / Reliability / Recycling

• AI-Based Summaries → No Other Way to Survive in a World of Exp. Increasing # of Publications (!)

X-Concepts

Modularization Synergetic Association Functional Integration Hybridization Decentralization

ETH zürich

SiC/GaN Figure-of-Merit

- Figure-of-Merit (FOM) Quantifies Conduction & Switching Properties FOM Determines Max. Achievable Efficiency @ Given Sw. Frequ.

Advantage of Multi-Level over 2-Level Converter Topologies

Scaling of Multi-Cell/Level Concepts

- Reduced Ripple @ Same (!) Switching Losses Lower Overall On-Resistance @ Given Blocking Voltage Application of LV Technology to HV

U

⊢

U

Source: R. Pilawa

 $400\,\mathrm{V}$ \overline{u} u_C $\frac{U}{8f_sL}$ 0 -400 V $\Delta \hat{I}_{\max,N} = 20\,\mathrm{A}$ $\frac{1}{N^2}\Delta \hat{I}_{-}$ ι_L $\max, N=1$ 0 -20 A 10150 5 $t \, \mathrm{[ms]}$ $400\,\mathrm{V}$ $\frac{\Delta \hat{U}_{C,\max,N}}{U} = \frac{\pi^2}{32} (\frac{f_o}{f_s})^2 \frac{1}{N^3}$ $200\,\mathrm{V}$ 0 8 10 12 14 16 *f*[kHz] $\mathbf{2}$ 6 0 f_{sw} $N.f_{sw}$

• Scalability / Manufacturability / Standardization / Redundancy

7 Level

10

 $t \, (ms)$

15

99.35%

2.6 kW/kg

56 W/in³

20

3-Φ Hybrid Multi-Level Inverter

- Realization of a 99%++ Efficient 10kW 3-Ф 400V_{rms,ll} Inverter System
 7-Level Hybrid Active NPC Topology / LV Si-Technology

• 200 V Si \rightarrow 200 V GaN Technology Results in 99.5% Efficiency

4.8MHz GaN Half-Bridge Phase Module

- **Combination of Series & Parallel Interleaving**
- 600V GaN Power Semiconductors, f_{sw} = 800kHz Volume of ≈180cm³ (incl. Control etc.) H₂0 Cooling Through Baseplate

• Operation @ f_{out} =100 kHz / $f_{sw,eff}$ = 4.8 MHz, 10 kW, U_{dc} =800V

3-Φ EV-Charger Topology

- Isolated Controlled Output Voltage
 Buck-Boost Functionality & Sinusoidal Input Current
 Applicability of 600V GaN Semiconductor Technology
 High Power Density / Low Costs

 \rightarrow Conventional / Independent OR "Synergetic Control" of Input & Output Stage

Synergetic Association 1/2

- 1/3-Modulation \rightarrow Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM
- Conduction Losses of the Switches ≈ -80%

• Operating Point Dependent Selection of 1/3-PWM OR 3/3-PWM for Min. Overall Losses

Sector I

Synergetic Association 2/2

- 1/3-Modulation \rightarrow Significant Red. of Losses of the Power Switches Comp. to 3/3-PWM
- Conduction Losses of the Switches ≈ -80%
- Switching Losses ≈ -70%

600

Sector I

• Operating Point Dependent Selection of 1/3-PWM OR 3/3-PWM for Min. Overall Losses

Isolated 3-ΦAC/DC Converters

- **Conventional Approach** \rightarrow Two-Stage | 3- \oplus PFC Rectifier & DC/DC Converter Stage
 - **Functional Integration** \rightarrow Utilizes AC/DC-Stage for Power Factor Corr. & HF AC Voltage Generation
 - \rightarrow Transformer Stray Inductance Used as Current Source

320...530V_{rms} Line-to-Line

380 V_{DC} (260...400 V_{DC}) Datacenter Power Distribution

- Elimination of DC/DC Converter Input Stage & DC-Link \rightarrow Single-Stage Energy Conversion (!)
- Electric Vehicle Battery Charging | Datacenter Power Supply | AC Grid Interfaces of DC Micro-Grids

3-••Input DAB-Type AC/DC Converter 1/2

Modification of 3-Φ Xfrm DAB → Prim.-Side Phase-Modular AC/DC Converter Topology
 Synchronized (!) Prim.-Side Switching @ 50% Duty Cycle

Voltage Stress on Prim.-Side AC Switches Determined by Peak Value of Grid PHASE Voltage (!)

Bidirectional Power Flow

ETH zürich

3-••Input DAB-Type AC/DC Converter 2/2

- Voltage Stress on AC-Side Power Transistors Determined by PHASE Voltage Amplitude (!)
- 600 V GaN MBDS for 400 VRMS Line-to-Line Grid ($U_{L-L,pk} = 560$ V) Unity Power Factor / Bidirectional

- Power Density w/ EMI-Filter \approx 6 kW/dm³ (98W/in³)

3-Port Resonant GaN DC/DC Converter

- Single Transformer & Decoupled Power Flow Control
- Charge Mode PFC \rightarrow HV (250...500V) SRC DCX / Const. f_{sw} , Min. Series Inductance / ZVS Drive Mode HV \rightarrow LV (10.5...15V) 2 Interleaved Buck-Converters / Var. f_{sw} / ZVS

P = 3.6 kW

- Peak Efficiency of 96.5% in Charge Mode / 95.5% in Drive Mode
- **PCB-Based Windings** / No Litz Wire Windings \rightarrow Fully Automated Manufacturing

Hybrid Integrated Active Filter (IAF) PFC Rectifier

- Hybrid Combination of Mains- and Forced-Commutated Converter 3rd Harmonic Current Injection into Phase with Lowest Voltage Phase Selector AC Switches Operated @ Mains Frequency 3-Φ Unfolder

Hybrid Integrated Active Filter (IAF) PFC Rectifier

- Hybrid Combination of Mains- and Forced-Commutated Converter 3rd Harmonic Current Injection into Phase with Lowest Voltage Phase Selector AC Switches Operated @ Mains Frequency 3-Φ Unfolder

• Non-Sinusoidal Mains Current

 \rightarrow P₀= const. Required \rightarrow Sinusoidal Mains Current \rightarrow NO (!) DC Voltage Control

 $u_{\rm c}$

240

6.0

7.0

8.0

9.0

300

360

IAF PFC Rectifier & Buck Converter Demonstrator

ETH zürich

Power Electronic Systems Laboratory

ViPDA Europe

Networking Scaling

- Metcalfe's Law
- Moving from Hub-Based Concept to Community Concept Increases Potential Network Value Over-Proportional $\rightarrow \sim n(n-1)$ or $\sim n \log(n)$

IIoT in Power Electronics

Digital Twin → Physics-Based "Digital Mirror Image"
 Digital Thread → "Weaving" Real/Physical & Virtual World Together

- Requires Proper Interfaces for Models & Automated Design
 Model of System's Past/Current/Future State → Design Corrections / Predictive Maintenance etc.

IIoT Starts with Sensors (!)

- **Condition Monitoring of DC Link Capacitors** On-Line Measurement of the ESR in *"Frequency Window"* (Temp. Compensated) Data Transfer by Optical Fibre or Near-Field RF-Link

Possible Integration into Capacitor Housing or PCB

Additionally features Series Connect. Voltage Balancing

ETH zürich

Smart Inverter Concept

Utilize High Computing Power and Network Effects in the Cloud

• On-Line Protection / Monitoring / Optimization on Component | Converter | Drive | Application Level

"Moore's Law" of Power Electronics

- *"Moore's Law"* Defines Consecutive Technology Nodes Based on Min. Costs per Integrated Circuit (!) Prediction in 1965: Number of Transistors on a Chip will Double Every ≈2 Years w/ Minimal Increase in Cost

- Potential Power Density Improvement Factor 2...5 Until 2030
- Definition of " η^* , ρ^* , σ^* , f_{ρ}^* Technology Node" Must Consider Conv. Type / Operating Range etc. (!)

Future Application / Research Areas

- WBG Driven Extension to Medium Voltage There is Plenty of Room at the Top (SSTs, XF EV Charging etc.)
- Extreme Cost Pressure for Standardized Solutions (!)

- "There's Plenty of Room at the Bottom" (R. Feynman @ Caltech, 1959) Monolithic Integr. etc.
- Key Importance of Technology Partnerships of Academia & Industry

Source: www.roadtrafficsigns.com

Power Electronics \rightarrow **Electronic** "Energy" Management

- Design Considering Converters as Standardized "Integrated Circuits" (PEBBs)
- **Extend Analysis to Converter Clusters / Power Supply Chains / etc.**

Systems" (Microgrid) or "Hybrid Systems" (Automation / Aircraft)
"Integral over Time" "Converter" "Time"

"Energy"

$$p(t) \rightarrow \int_{0}^{t} p(t) dt$$

- Power Conversion - Converter Analysis
 - \rightarrow Energy Management / Distribution
 - \rightarrow System Analysis (incl. Interactions Conv. / Conv. or Load or Mains)
- \rightarrow System Stability` (Autonom. Cntrl of Distributed Converters) - *Converter Stability*
 - \rightarrow Energy Storage & Demand Side Management → Life Cycle Costs / Mission Efficiency / Supply Chain Efficiency
- Costs / Efficiency

- Cap. Filtering

- etc.

Energy Management — *DC Micro-/Nanogrids*

- **Renewable Energy Integration**
- "Networked" Bidir. Flow/Exchange of Energy & Signals/Data | Distrib. Autonom. Cntrl & Protection Hybrid Power Solutions Combin. of Electric / Hydraulic / etc. Systems | Continuous Opt. & Diagnosis

Power Electronic Systems Laboratory

- Global Population by 2050 10bn 100 2.5 kW/Capita
 25'000 GW Installed Ren. Generation in 2050
- 4x Power Electr. Conversion btw Generation & Load
- **100'000 GW** of Installed Converter Power
- **20 Years of Useful Life**

5'000 GW_{eq} = 5'000'000'000 kW_{eq} of E-Waste / Year (!)
 10'000'000'000 \$ of Potential Value

44 / 47 ____

52'000'000 Tons of Electronic Waste Produced Worldwide in 2021 → 74'000'000 Tons in 2030
 Increasingly Complex Constructions → No Repair or Recycling

Growing Global E-Waste Streams \rightarrow Regulations Mandatory (!) \bullet

Source:

The Paradigm Shift

Growing Global E-Waste Streams / < 20% Recycled

120'000'000 Tons of Global E-Waste in 2050

- *"Linear" Economy / Take-Make-Dispose → "Circular" Economy / Perpetual Flow of Resources Resources Returned into the Product Cycle at the End of Use*

47 / 47 __ 📤

Power Electronics 5.0

Thank you!

